nation of corrections for heat interchange by controlling the temperature of a shield becomes very difficult. In the temperature range above 250°K., on the other hand, where a difference thermocouple is very sensitive and where the corrections for thermal relaxation times within the calorimetric system become important, we believe that an adiabatic calorimeter is capable of more accurate results than our isothermal calorimeter. Even in part by the Office of Naval Research.

this region, however, a comparison of our measurements of the heat capacity of benzoic acid with those of the other laboratories indicates that our estimate of a possible error of 0.4% at 300°K. is a generous one

Acknowledgments.—We are indebted to the Atomic Energy Commission for the support of this research. The research was also supported in

[CONTRIBUTION FROM THE DEPARTMENTS OF CHEMISTRY AND PHYSIOLOGY AND THE INSTITUTE FOR THE STUDY OF METALS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS]

Heat Capacities from 11 to 305°K. and Entropies of *l*-Alanine and Glycine¹

By John O. Hutchens, Arthur G. Cole and J. W. Stout

Received October 15, 1959

The heat capacities of *l*-alanine and glycine have been measured from 11 to 305° K. The entropies at 298.15°K. were found to be 30.88 cal. deg.⁻¹ mole⁻¹ for *l*-alanine and 24.74 cal. deg.⁻¹ mole⁻¹ for glycine. The heat capacities, entropies, $(H^{\circ} - H^{\circ}_{0})/T$ and $-(F^{\circ} - H^{\circ}_{0})/T$ are tabulated for both substances from 10 to 310°K. The values of $S^{\circ}_{298.15} - S^{\circ}_{100}$ found are in good agreement with previous work by Huffman and Borsook on *d*-alanine and by Parks, *et al.*, on glycine. However, extrapolation procedures employed below 90°K. by previous workers led to too high an estimate for S°_{10} for both amino acids.

One of the most obvious deficiencies in present day knowledge of the metabolism of living organisms is the lack of information concerning energetic changes associated with the synthesis of proteins. For several years we have been engaged in measuring the heat capacities of the naturally occurring amino acids and some selected proteins to establish the entropies of these compounds. Concurrently Tsuzuki and Hunt² have been measuring the heats of combustion of these same compounds. The projects were undertaken to supplement work on the few amino acids studied in the 1930's by Huffman, Borsook and others.³

We present here our data on glycine and l-alanine. d-alanine has been studied previously⁴ as has glycine⁵ but not below 90°K. Estimates of the entropies of these amino acids must be revised as a result of extending heat capacity measurements below 90°K. Furthermore, over the entire range of temperatures employed, our data offer a greater degree of precision than the previous studies.

Experimental

Amino Acids .- The glycine and l-alanine used in these studies were provided by the late Jesse P. Greenstein of the National Institutes of Health. Both were free of other amino acids as indicated by unidirectional paper chromatography using five different solvent systems (formix, MeOH-pyri-dine, ketone mix, phenol and butanol-acetic acid). The *l*-alanine was 99.9% free of the *d*-isomer by the criteria of Meister, *et al.*⁶ Both amino acids were crystalline as evi-denced by examination in polarized light. Both materials were dried at room temperature for several days at 10^{-4} were dried at room temperature for several days at 10^{-4} mm. in a system trapped with liquid nitrogen. After load-

(1) This work was supported by the U. S. Atomic Energy Commission.

(2) T. Tsuzuki and H. Hunt, J. Phys. Chem., 61, 1668 (1957).

(3) H. Borsook and H. M. Huffman in C. L. A. Schmidt, "Chemistry of the Amino Acids and Proteins," C. C Thomas, Springfield, Ill., Baltimore, 1938, p. 822.

(4) H. M. Huffman and H. Borsook, THIS JOURNAL, 54, 4297 (1932).

(5) G. S. Parks, H. M. Huffman and M. Barmore, ibid., 55, 2733 (1933).

(6) A. Meister, L. Leventow, R. B. Kingsley and J. P. Greenstein, J. Biol. Chem., 192, No. 2, 535 (1951).

ing the calorimeter they were subjected to pumping at $<10^{-6}$ mm. pressure for 48 hr. No weight losses which could be considered significant occurred. Nonetheless the heat capacity measurement on glycine at 269.27 °K. is 1.1% high and was ignored in drawing the curve from which the thermodynamic functions were derived. We believe the high value probably arises from the melting of water in the sample. To produce the excess heat observed in this measurement, 0.022 g. H₂O per mole of glycine would be At other temperatures the effect on the heat carequired. pacity of this amount of water is always less than 0.06%, and since it is small compared to the experimental error, no correction has been made.

Experimental Methods and Calculations .-- The methods for measuring heat capacities and for calculating the results have been described in detail.⁷ As an additional detail, the method used to extrapolate the heat capacity curve below 11 °K. was as follows. Values of $(\Delta H/\Delta T)/T^2$ were plotted as a function of T and this curve extrapolated in such a fashion that $\Delta H/\Delta T$ was proportional to T^3 as T approached zero. The fractional error involved is no doubt appreciable, but since S°_{10} is less than 0.2% of $S^{\circ}_{298,15}$ the absolute error is tolerable. The calorimeter used was the one with six radial fins and the heater-thermometer was the one bearing the laboratory designation "H" described in the previous paper. The sample weight was 47.431 g. for *l*-alanine and 98.129 g. for glycine. The heat capacity of the empty calorimeter rep-resented 40-50% of the total heat capacity over most of the temperature range employed, falling to 25% at 300°K. in the case of glycine.

Results

The experimentally measured quantities (ΔH) ΔT) are given in Table I for glycine and in Table II for l-alanine. The individual values are listed in the chronological order in which they were obtained and the thermal history of the compounds can be deduced from the table. Glycine had an exceptionally stormy history as a result of a broken vacuum line. In general the temperature rise in individual experiments can be deduced from the intervals between the points. Where an occasional run was lost or where cooling overnight led to overlapping of points, the following applies: From 11-50 °K. ΔT was approximately 0.1 T. From 50-150°K., $\Delta T < 5.5^{\circ}$, from 150–200°K., $\Delta T < 6^{\circ}$;

(7) A. G. Cole, J. O. Hutchens, R. A. Robie and J. W. Stout, THIS JOURNAL, 82, 4807 (1960).

TABLE I

Heat	CAPACITY	OF GLYCE	ne in Cai	L. DEG1 1	MOLE ⁻¹
0°C.	= 273.15	°K. Mol. v	vt. CH₂N	$H_2CO_2H =$	75.07
<i>Τ</i> , °Κ.	$\Delta H/\Delta T$	<i>T</i> , °K.	$\Delta H/\Delta T$	T, °K.	$\Delta H/\Delta T$
301.15	23.94	Run	Run lost		19.91
301.70	23.91	89.92	9.441	299.09	23.70
53.74	5.137	95.24	9.920	231.32	19.21
58.91	5.861	100.31	10.36	238.22	19.66
64.10	6.556	105.20	10.77	244.97	20.12
68.83	7.144	108.88	11.07	252.08	20.60
73.88	7.728	114.31	11.51	261.61	21.24
78.68	8.266	119.92	11.94	269.27	22.01
83.84	8.835	125.09	12.32	276.69	22.27
88.55	9.314	130.32	12.69	284.28	22.78
93.58	9.781	134.32	13.01	292.23	23.28
98.65	10.22	139.73	13.39	11.58	0.096
103.55	10.62	145.14	13.74	12.40	. 126
109.46	11.13	150.57	14.12	13.68	.170
115.19	11.57	156.04	14.48	15.15	. 241
$188 \rightarrow$	300 →	161.50	14.84	16.84	.335
11 2	°K.	165.73	15.10	18.63	. 462
114.28	11.52	171.66	15.49	20.64	. 627
119.35	11.89	177.30	15.87	22.54	. 804
124.30	12.26	183.07	16.22	24.81	1.048
124.45	12.28	188.84	16.57	27.50	1.360
129.32	12.64	191.43	16.72	30.34	1.727
300.96	23.94	197.09	17.11	33.46	2.158
53.40	5.090	202.97	17.47	36.87	2.647
58.81	5.848	208.91	17.83	40.54	3.188
64.10	6.556	214.95	18.20	44.65	3.802
69.82	7.267	220.90	18.56	49.19	4.482
74.59	7.825	227.58	19.02		
79.33	8.349	234.57	19.44		

from 200–250 °K., $\Delta T < 6.5^{\circ}$; from 250–310 °K., $\Delta T < 7^{\circ}$. Analysis of the individual experiments indicated that no curvature corrections were necessary within the limits of accuracy claimed⁷ except for the point at 11.58 °K. (Table I) where the correction is -0.7%. With this exception the values of $\Delta H/\Delta T$ given in Table I are equal to $C_{\rm p}$ at

TABLE II

HEAT CAPACITY OF l -Alanine in Cal. Deg. ⁻¹ Mole ⁻¹						
$0^{\circ}C_{*} = 273.15^{\circ} \text{ K}$. Mol wt. CH ₃ CHNH ₂ CO ₂ H = 89.09						
<i>T</i> , °K.	$\Delta H/\Delta T$	<i>Τ</i> , °Κ.	$\Delta H / \Delta T$	<i>Τ</i> , °K.	$\Delta H / \Delta T$	
302.25	29.67	161.65	18.38	305.40	29.75	
56.13	6.820	167.87	18.91	300 →	10 →	
61.46	7.637	174.16	19.44	300°K.		
67.20	8.462	18 0. 11	19.90	300.96	29.28	
Run lost		186.25	20.38	11.66	0.186	
		192.33	20.87	12.44	. 223	
77.60	9.852	198.59	21.34	13.74	. 303	
82.74	10.56	205.58	21.90	15.22	. 422	
87.68	11.18	212.68	22.44	16.94	. 582	
92.94	11.78	219.55	22.93	18.73	.771	
98.37	12.37	225.60	23 . 45	20.69	1.004	
104.03	12.99	232.38	23.99	23.27	1.358	
109.82	13.60	239.42	24 , 58	25.89	1.744	
115.70	14.17	246.51	25.25	28.61	2.182	
120.65	14.68	253.46	25.71	31.63	2.691	
126.48	15.22	260.50	26.21	34.91	3.277	
132.28	15.79	267 63	26.78	38.49	3.896	
138.06	16.34	273.80	27.39	42.36	4.551	
143.83	16.82	280.91	27.90	46.83	5.316	
149.61	17.31	288.46	28.51	51.88	6.142	
155.54	17.86	296.23	29.01	57.16	6.967	

the given temperatures. The ice point was taken as 273.15 °K. and 1 cal. = 4.1840 abs. joules.

The thermodynamic properties of glycine derived from the data of Table I are given in Table III and equivalent data for *l*-alanine in Table IV.

TABLE III

I ABLE III						
THERMODY	INAMIC PI			Cal. Deg1		
		Mole ⁻¹				
			$H^{\circ} - H^{\circ}_{\circ}$	$\frac{-(F^{\circ} - H^{\circ}_{0})}{T}$		
<i>T</i> , °K.	CP°	S°				
10	0.061	0.019	0.015	0.005		
15	.231	.071	.054	.017		
20	.572	.180	.138	.043		
25	1.067	. 328	.247	.082		
30	1.682	.576	. 433	. 142		
35	2.374	.886	.660	.226		
40	3.108	1.251	. 920	.331		
45	3.853	1.660	1.205	.455		
50	4.600	2.105	1.507	. 598		
55	5.321	2.577	1.821	.756		
60	6.012	3.070	2.142	.928		
70	7.287	4.095	2.788	1.307		
80	8.427	5.144	3.423	1.721		
90	9.449	6.197	4.037	2.160		
100	10.34	7.239	4.623	2.616		
110	11.16	8.263	5.180	3.083		
120	11.95	9.268	5.712	3.556		
130	12.69	10.25	6.221	4.034		
140	13.40	11.22	6.709	4.513		
150	14.08	12.17	7.178	4.992		
160	14.74	13.10	7.630	5.469		
170	15.39	14.01	8.067	5.945		
180	16.02	14.91	8.492	6.418		
190	16.65	15.79	8.904	6.889		
200	17.28	16.66	9.307	7.356		
210	17.90	17.52	9.702	7.819		
220	18.52	18.37	10.09	8.280		
230	19.14	19.20	10.47	8.736		
240	19.80	20.03	10.84	9.190		
250	20.46	20.85	11.21	9.640		
260	21.14	21.67	1 1 .58	10.09		
270	21.81	22.48	11.95	10.53		
280	22.48	23.29	12.31	10.97		
290	23.16	24.09	12.68	11.41		
300	23.84	24.88	13.04	11.85		
310	24.53	25.68	13.40	12.28		
273.15	22.02	22.73	12.06	10.67		
298.15	23.71	24.74	12.97	11.77		
310.15	24.54	25.69	13.40	12.29		

Discussion

Over the temperature range in which previous studies were made, and to the degree of accuracy claimed^{4,5} we find good agreement. Thus Parks, *et al.*, ⁵give $S^{\circ}_{298.15} - S^{\circ}_{90}$ for glycine as 18.57 cal. deg.⁻¹ mole⁻¹; we find 18.54 cal. deg.⁻¹ mole⁻¹. Huffman and Borsook⁴ give $S^{\circ}_{298.15} - S^{\circ}_{90}$ as 22.77 cal. deg.⁻¹ mole⁻¹ for *d*-alanine; we find 22.88 cal. deg.⁻¹ mole⁻¹ for *l*-alanine. Thus the differences between our entropy values and theirs at the various temperatures are to be attributed largely to the extrapolation procedures used by the previous workers below 90 °K. This is of considerable importance since S°_{90} in both cases represents *ca.* 25% of $S^{\circ}_{298.15}$. Their value of $S^{\circ}_{90} = 8.88$ cal. deg.⁻¹ mole⁻¹ for *d*-alanine differs by 0.88 cal. deg.⁻¹ mole⁻¹ for

		Table I	v		260	26.22	27.09	14.34	12.74
Thermod	YNAMIC PRO	OPERTIES OF	F <i>l</i> -ALANINE.	Cal. Deg. ⁻¹	270	27.02	28.09	14.80	13.29
		Mole			280	27.82	29.09	15.25	13 84
			$\frac{H^{\circ} - H^{\circ}}{T}^{0}$	$\frac{-(F^{\circ} - H^{\circ}_{0})}{T}$	290	28.60	30.08	15.70	14.38
Т, °К.	Cp°	S°	T	T	300	29.36	31.06	16.14	14.92
10	0.118	0.040	0.030	0.010	310	30.11	32.04	16.58	15.46
15	. 400	. 133	.100	. 033	273.15	27.27	28.41	14.94	13.46
20	. 920	. 314	.236	.079	298.15	29.22	30.88	16.06	14.82
25	1.607	.591	. 439	.152	310.15	30.12	32.05	16.58	15.47
30	2.412	.954	.699	.255					
35	3.286	1.391	1.006	.385					e case of gly-
40	4.151	1.887	1.346	. 541	cine the	e differenc	e is even	greater. F	°arks, <i>et al.</i> ,⁵
45	4.997	2.425	1.704	.720	give $S^{\circ}_{\mathfrak{g}}$	$_{90} = 7.55$ c	21. deg1	mole ⁻¹ wh	ich differs by
50	5.832	2.995	2.076	.919					of 6.197 cal.
55	6.640	3.589	2.454	1.135					be seen that
60	7.414	4.200	2.836	1.364					too high a
70	8.850	5.452	3.594	1.859					ables III and
80	10.19	6.722	4.335	2.387	IV S°_{10} amounts to only 0.02 cal. deg. ⁻¹ mole ⁻¹ for				
90	11.44	7.996	5.056	2.940				mole ⁻¹ for	<i>l</i> -alanine, in
100	12.56	9.260	5.752	3.509		se $< 0.2\%$ (
110	13.61	10.51	6.419	4.088	We h	ave reject	ed the ter	nptation to	o recalculate
120	14.60	11.73	7.059	4.674	the free energy changes associated with formation				
130	15.56	12.94	7.677	5.264	of peptide bonds involving glycine and l-alanine.				
140	16.49	14.13	8.274	5.855	More reliable data on the entropies of peptides as				
150	17.38	15.30	8.851	6.445	well as	more pre	cise heats	of combu	stion on all
160	18.24	16.45	9.411	7.035	compounds involved will be required before exist-				
170	19.08	17.58	9.956	7.622	ing unce	ertainties ⁸	can be reso	olved. Nev	ertheless it is
180	19.89	18.69	10.49	8.206					on of glycyl-
190	20.68	19.79	11.00	8.786					for the free
200	21.46	20.87	11.50	9.364					of <i>ca</i> . 800 cal.
210	22.23	21.93	12.00	9.937	by our	values for	' S° _{298.15} fo	r glycine.	This is con-
220	23.00	22.98	12.48	10.51					asis of older
230	23.80	24.02	12.95	11.07	figures i	nvolves or	ily some 3	500 cal. at 2	298°K.
240	24.60	25.05	13.42	11.63	(8) H.	Borsook, Rec	ent Advances	in Protein C	hemistry, 8 , 127
250	25.41	26.07	13.89	12.19	(1953).	,,			

[Contribution No. 2561 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California]

The Preparation of $(Nb_6Cl_{12})Cl_2 \cdot 7H_2O^1$

By Herbert S. Harned,² Crellin Pauling and Robert B. Corey

RECEIVED MARCH 17, 1960

 Nb_6Cl_{14} ·7H₂O was first prepared in 1913 by reduction of $NbCl_5$ with sodium amalgam, but the yield was not high and some recent attempts to use the method for large-scale preparations have been disappointing. An investigation has been made of the use of other metals as reducing agents, of which cadmium was found to be the most satisfactory. Essential details of a new procedure for preparing Nb_6Cl_{14} ·7H₂O from metallic niobium are given.

The complex chloride of niobium Nb₆Cl₁₄·7H₂O was first prepared in 1913³; its properties were shown to correspond to the formula (Nb₆Cl₁₂)-Cl₂·7H₂O. X-Ray diffraction studies of concentrated solutions⁴ showed the configuration of the Nb₆Cl₁₂⁺⁺ ion to be an octahedral grouping of niobium atoms with chlorine atoms on the radial perpendicular bisectors of the edges of the octahedron. New interest in the complex ions Nb₆Cl₁₂⁺⁺ and Ta₆Cl₁₂⁺⁺ has been aroused by their proposed use for the growth of isomorphous protein crystals suit-

able for X-ray analysis.⁵ Attempts were made in this Institute to prepare the compounds (Ta_6Cl_{12}) - Cl_{2} · $7H_2O$ and $(Nb_6Cl_{12})Cl_{2}$ · $7H_2O$ for incorporation into protein crystals. The former compound was prepared without difficulty by the method described by Lindner and Feit.⁶ Several attempts in these Laboratories by other investigators to repeat the preparation of the corresponding niobium compound were unsuccessful. An investigation of the preparation of this compound therefore was undertaken by us.

First, the preparation of Nb_6Cl_{14} 7H₂O by the procedure originally used by Harned³ was repeated. It was successful except for the low yield (about 1%) relative to the amount of NbCl₅ used. In an

⁽¹⁾ This investigation was supported in part by Research Grant H-2143 from the National Heart Institute, Public Health Service.

⁽²⁾ Sterling Chemistry Laboratory, Yale University, New Haven, Conn.

⁽³⁾ H. S. Harned, THIS JOURNAL, 35, 1078 (1913).

⁽⁴⁾ P. A. Vaughan, J. H. Sturdivant and L. Pauling, *ibid.*, **72**, 5477 (1950).

⁽⁵⁾ L. Pauling, personal communication to R. B. C.

⁽⁶⁾ K. Lindner and H. Feit, Z. anorg. allgem. Chem., 137, 66 (1924).